Scientific Publications

NUPLAZID™ (also known as pimavanserin or ACP-103)

Cummings J, et al.: Pimavanserin for patients with Parkinson’s disease psychosis: a randomized, placebo-controlled phase 3 trial. The Lancet, 383, 533-540 (2014).
Hacksell U, et al.: On the Discovery and Development of Pimavanserin: A Novel Drug Candidate for Parkinson’s Psychosis. Neurochemistry Research, 39, 2008-2017 (2014).
Ballard C, et al.: Impact of Current Antipsychotic Medications on Comparative Mortality and Adverse Events in People With Parkinson Disease Psychosis. Journal of the American Medical Directors Association, e-pub (2015).
Meltzer HY, et al.: Pimavanserin, a serotonin 2A receptor inverse agonist for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology, 35, 881-892 (2010).
Meltzer HY, et al.: Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2 mg/day, but does not enhance efficacy of haloperidol, 2 mg/day: Comparison with reference dose risperidone, 6 mg/day. Schizophrenia Research, 141, 144-152 (2012).
Ancoli-Israel S., et al.: Pimavanserin tartrate, a 5-HT2A receptor inverse agonist, increases slow wave sleep as measured by polysomnography in healthy adult volunteers. Sleep Medicine, 12, 134-141 (2011).
Nordstrom AL, et al.: PET analysis of the 5-HT2A receptor inverse agonist ACP-103 in human brain. The International Journal of Neuropsychopharmacology, 11, 163-171 (2007).
Vanover KE, et al.: Pharmacokinetics, Tolerability, and Safety of ACP-103 Following Single or Multiple Oral Dose Administration in Healthy Volunteers. The Journal of Clinical Pharmacology, 47, 704-714 (2007).
Vanover KE, et al.: A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacology Biochemistry and Behavior, 90, 540-544 (2008).
McFarland, et al.: Pimavanserin, a 5-HT2A inverse agonist, reverses psychosis-like behaviors in a rodent model of Parkinson’s disease. Behavioural Pharmacology, 22, 681-692 (2011).
Hubbard D, et al.: Behavioral effects of clozapine, pimavanserin, and quetiapine in rodent models of Parkinson’s disease and Parkinson’s disease psychosis: evaluation of therapeutic ratios. Behavioural Pharmacology, 24, 628-632 (2013).
Price DL, et al.: Pimavanserin, a 5-HT2A receptor inverse agonist, reverses psychosis-like behaviors in a rodent model of Alzheimer’s disease. Behavioural Pharmacology, 23, 426-433 (2012).
Gardell LR, et al.: ACP-103, A 5-Hydroxytryptamine 2A Receptor Inverse Agonist, Improves the Antipsychotic Efficacy and Side-Effect Profile of Haloperidol and Risperidone in Experimental Models. The Journal of Pharmacology and Experimental Therapeutics, 322, 862-870 (2007).
Vanover KE, et al.: Pharmacological and Behavioral Profile of N-(4-Fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N’-(4-(2-methylpropyloxy) phenylmethyl) Carbamide (2R, 3R)-Dihydroxybutanedioate (2:1) (ACP-103), a Novel 5-Hydroxytryptamine2A Receptor Inverse Agonist. The Journal of Pharmacology and Experimental Therapeutics, 317, 910-918 (2006).

Other Relevant Scientific Publications

McFarland K, et al.: Low-Dose Bexarotene Treatment Rescues Dopamine Neurons and Restores Behavioral Function in Models of Parkinson’s Disease. ACS Chemical Neuroscience, 4:1430-1438 (2013).
Ma JN, et al.: The Protease Activated Receptor 2 (PAR2) Polymorphic Variant F240S Constitutively Activates PAR2 Receptors and Potentiates Responses to Small-Molecule PAR2 Agonists. The Journal of Pharmacology and Experimental Therapeutics, 347, 697-704 (2013).
George S, et al.: Nonsteroidal Selective Androgen Receptor Modulators and Selective Estrogen Receptor Beta Agonists Moderate Cognitive Deficits and Amyloid-Beta Levels in a Mouse Model of Alzheimer’s Disease. ACS Chemical Neuroscience, 4:1537-1548 (2013).
Ma JN, et al.: Characterization of highly efficacious allosteric agonists of the human calcium receptor. Journal of Pharmacology and Experimental Therapeutics, 337, 275-284 (2011).
Gaubert G., et al.: Discovery of Selective Nonpeptidergic Neuropeptide FF2 Receptor Agonists. Journal of Medicinal Chemistry, 52, 6511-6514 (2009).
Del Tredici AL, et al.: Identification of novel selective V2 receptor non-peptide agonists. Biochemical Pharmacology, 76, 1134-1141 (2008).
Piu F, et al.: Broad modulation of neuropathic pain states by a selective estrogen receptor beta agonist. European Journal of Pharmacology, 590, 423-429 (2008).
Piu F, et al.: Pharmacological characterization of AC-262536, a novel selective androgen receptor modulator. The Journal of Steroid Biochemistry and Molecular Biology, 109, 129-137 (2008).
Burstein ES, et al.: Integrative Functional Assays, Chemical Genomics and High Throughput Screening: Harnessing Signal Transduction Pathways to a Common HTS Readout. Current Pharmaceutical Design, 12, 1717-1729 (2006).
Weiner DM, et al.: Psychosis of Parkinson’s disease: Serotonin 2A receptor inverse agonists as potential therapeutics. Current Opinion in Investigational Drugs, 4, 815-819 (2003).
Weiner DM, et al.: 5-Hydroxytryptamine2A Receptor Inverse Agonists as Antipsychotics. The Journal of Pharmacology and Experimental Therapeutics, 299, 268-276 (2001).